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Salvador Miracle-Sole  I 

Received June 20, 1994 

Some aspects of the microscopic theory of interfaces in classical lattice systems 
are developed. The problem of the appearance of facets in the (Wulff) 
equilibrium crystal shape is discussed, together with its relation to the dis- 
continuities of the derivatives of the surface tension r(n) (with respect to the 
components of the surface normal n) and the role of the step free energy rstep(m) 
(associated with a step orthogonal to m on a rigid interface). Among the results 
are, in the case of the Ising model at low enough temperatures, the existence of 
crop(m) in the thermodynamic limit, the expression of this quantity by means of 
a convergent cluster expansion, and the fact that 2rstCP(m) is equal to the value 
of the jump of the derivative OrlO0 (when 0 varies) at the point 0=0  [with 
n = (mj sin O, m 2 sin O, cos 0)]. Finally, using this fact, it is shown that the facet 
shape is determined by the function CrOP(m). 

KEY WORDS: Surface tension; step free energy; crystal shapes; roughening 
transition; Wulff construction. 

1. I N T R O D U C T I O N  

I t  is k n o w n  tha t  the equ i l i b r ium shape of  a crystal  is ob ta ined ,  accord ing  
to the t h e r m o d y n a m i c  theory,  by m i n i m i z i n g  the to ta l  surface free energy 
associated wi th  the c r y s t a l - m e d i u m  interface, a n d  tha t  this shape is given 
by  the Wulf f  cons t ruc t ion ,  p rov ided  one  k n o ws  the an i so t rop ic  surface 
t ens ion  (or  interfacial  free energy per  un i t  area).  I t  is therefore i m p o r t a n t ,  
even if a microscopic  de r iva t ion  of  the Wulf f  cons t ruc t ion  wi th in  stat ist ical  
mechan ics  has been  p roved  on ly  for some t wo -d im ens iona l  lat t ice models ,  
see the recent  work  by  D o b r u s h i n  et al. (1), to s tudy  the proper t ies  of  the 
surface tens ion  T(n) as a func t ion  of  the u n i t a ry  vec tor  n which  specifies the 
o r i en ta t ion  of the interface with respect  to the crystal  axes. A first analysis  
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on this subject was reported in ref. 2. It is the object of the present work 
to pursue this study and, in particular, to discuss the problem of the 
appearance of plane facets in the equilibrium crystal shape. For this pur- 
pose several aspects of the microscopic theory of interfaces are developed, 
and another important quantity in this theory, the step free energy, is 
investigated. 

1.1. Background 

A standard way to define the surface tension between two coexisting 
phases in a classical lattice system is to consider particular boundary condi- 
tions which enforce, inside a given volume, an interface orthogonal to the 
vector n. One expects that the thermodynamic limit r(n) of the interfacial 
free energy per unit area exists and that (as a function of n) it satisfies the 
pyramidal inequality. A proof of these facts, under appropriate assump- 
tions, was given in ref. 2. Let us mention that the pyramidal inequality, 
introduced in ref. 1 for the two-dimensional Ising model, was conjectured 
to hold true in very general situations, from thermodynamic arguments, in 
ref. 3. It is equivalent (as shown in ref. 2) to the convexity of the function 
f (x)  = Ix[ z(x/Ix[) for any vector x. 

The step free energy also plays an important role in the problem under 
consideration. It is defined (again using the appropriate boundary condi- 
tions) as the free energy (per unit length) associated with the introduction 
of a step of height 1 on the interface, and can be regarded as an order 
parameter for the roughening transition. 

Let us consider, as an illustrative example, the Ising ferromagnet in 
d =  3 dimensions. At a low temperature T >  0 we expect the interface 
orthogonal to the direction n0=(0, 0, 1), which is flat at T--0, to be 
modified by deformations (called walls). The corresponding Gibbs prob- 
ability of interfaces may be interpreted as a "gas of deformations," a certain 
two-dimensional system for these walls. Using the Peierls method, 
Dobrushin (4) proved the dilute character of this gas at low temperatures, 
which means that the interface is essentially flat (or rigid). Furthermore, 
cluster expansion techniques have been applied by Bricmont et  alJ  s) to 
study the surface tension r(no) and the interface structure (see also ref. 6). 

It is believed that at higher temperatures, but before reaching the 
critical temperature To, the fluctuations of the considered interface become 
unbounded when the volume tends to infinity. The interface undergoes 
a roughening phase transition at a temperature T =  TR. Approximate 
methods used by Weeks et  al. ~ suggest T R  "~ 0.53Tc, a temperature slightly 
higher then T d=2 (the critical temperature of the two-dimensional Ising 
model), and actually van Beijeren c8) proved, using correlation inequalities, 
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that TR>t d=2 T c . The analogous result for the step free energy, i.e., that 
r step > 0 if d= 2 T <  T c , was proved in ref. 9, as well as that z step = 0 if T >~ To. 
Since then, however, there has appeared no proof of the fact that T R < To. 
At present one is able to study rigorously the roughening transition only 
for some simplified models of the interface. Thus, Fr6hlich and Spencer t~~ 
proved this transition for the SOS (solid-on-solid) model, and several 
restricted SOS models, which are exactly solvable, have also been studied 
in this context (these models are reviewed in refs. 11 and 12). 

The roughness of an interface should be apparent when considering 
the shape of the equilibrium crystal associated with the system. One knows 
that a typical equilibrium crystal at low temperatures has smooth plane 
facets linked by rounded edges and corners. The area of a particular facet 
decreases as the temperature is raised and the facet finally disappears at a 
temperature characteristic of its orientation. The reader will find information 
and references on equilibrium crystals in the review articles of refs. 11-14. 

It can be argued, as discussed below, that the roughening transition 
corresponds to the disappearance of the facet whose orientation is the same 
as that of the considered interface. The exactly solvable SOS models 
mentioned above, for which the function z(n) has been computed, are 
interesting examples of this behavior (this subject has been reviewed 
in ref. 12, Chapter VII). For the three-dimensional Ising model, Bricmont 
e t  al. ~15~ have proved a correlation inequality which establishes r step as a 
lower bound to the one-sided derivative 3r(O)/OO[o=o+, where r(O)= 
r(O, sinO, cosO). Thus r~teP>O implies a kink in r(O) at 0 = 0  and, 
according to the Wulff construction, a facet is expected. 

In fact, it is believed that "c step should be equal to this derivative, 
and we shall return to this question below. This is reasonable, since the 
increment in surface tension of an interface tilted by an angle 0 with respect 
to the surface tension of the rigid interface can be approximately identified, 
for 0 small, with the free energy of a "gas of steps" (the density of the steps 
being proportional to 0). And, again, if the interaction between the steps 
can be neglected, the free energy of this gas can be approximated by the 
sum of the individual free energies of the steps. 

1.2. Outline of the Present Work 

In Section 2, some macroscopic properties of the equilibrium crystal 
shape given by' the Wulff construction are discussed. We assume that the 
surface tension satisfies the pyramidal inequality [to be defined in See- 
tion2, Eq. (3)]. We prove (Theorem 1) that a facet orthogonal to the 
direction no appears in the Wulff equilibrium crystal shape if, and only if, 
the derivative 0r(0, ~b)/00 is discontinuous at the point 0 = 0, for all ~b. Here, 
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the function r(n) = ~(0, ~b) is expressed in terms of the spherical coordinates 
0 ~< 0 ~< n, 0 <~ ~b ~< 2n of n, the vector no being taken as the polar axis. 
Moreover, the one-sided derivatives 0r(0, 4)/00 at 0 = 0 § and 0 = 0 - ,  exist, 
and determined the shape of the facet. 

In Section 3 we introduce the microscopic theory. The surface tension 
and the step free energy are defined in the case of a classical lattice gas. 
Some previous results, based mainly on correlation inequalities, are 
reviewed and extended. Theorems 2 and 4 concern the properties of the two 
quantities just mentioned, and Theorem 3 is about the result quoted from 
ref. 15. It is clear from Theorem 1 that the quoted correlation inequality is 
a sufficient condition for the formation of a facet in the Ising model if 
rstep > 0. Several applications and examples are discussed at the end of the 
section. 

In Section 4, cluster expansion techniques for studying the step free 
energy at low temperature are developed. For the Ising ferromagnet at 
T =  0, the step parallel to a lattice axis on the rigid interface orthogonal to 
n 0 = (0, 0, 1 ) is a perfectly rectilinear step of height 1. At a low temperature 
T >  0 we expect some deformations to appear, connected by straight por- 
tions of height 1. The step structure, in the corresponding Gibbs state, can 
then be described as a one-dimensional "gas" of these deformations (to be 
called step-jumps), which mutually interact through the effect of the rest of 
the system. This description, somehow similar to the description of the 
interface of the two-dimensional Ising model used by Gallavotti, 1~6) is 
valid, in fact, for any orientation of the step defined by the vector m = 
(cos ~b, sin ~b) on the plane of the rigid interface. It can be seen that the gas 
of deformations is a dilute gas at low temperatures and can also be studied 
by using cluster expansion techniques. 

As a consequence of this analysis, we show that the step free energy 
per unit length rsteP(m) exists in the thermodynamic limit (a question that 
could not be solved with correlation inequalities) and satisfies the 
pyramidal inequality in its strict form, provided that the temperature is low 
enough. Moreover, the step free energy rstep(m) can be expressed in terms 
of an analytic function of the temperature, for which a convergent series 
expansion is found (Theorems 5 and 6). 

Finally, we study the statistical mechanics of the "gas of steps" which 
appears in the description of an interface tilted by a very small angle with 
respect to the rigid interface. We consider the three-dimensional Ising 
model at sufficiently low temperature, and apply the results of Section 4 on 
the step structure. The heuristic argument about the free energy of such 
interfaces explained above can be developed into a proof of the relation 

a-c(o, ,/,)/aOl e= o+ = r "~  ( 1 ) 
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This is the content of Theorem 7 in Section 5. This relation, together with 
Theorem 1, implies that one obtains the shape of the facet by means of the 
two-dimensional Wulff construction applied to the step free energy zstep(m). 
The facet has a smooth boundary without straight segments. 

The results mentioned in the last paragraph are stated in Section 5. 
Section 6 is devoted to the proof of Theorem 7. 

For the reader's convenience we include an appendix with a brief 
account of low-temperature expansions. Notice that one needs the cluster 
expansion, in terms of walls, for the rigid interface in order to describe the 
interaction between the step-jumps and to study the step structure and the 
associated cluster expansion. 

2. M A C R O S C O P I C  P R O P E R T I E S  

According to the Wulff construction, the equilibrium shape of a crystal 
is given by 

~/" = {x e Ra: x .  n ~< r(n)} (2) 

where the inequality is assumed for each unit vector n e R a and r(n) is the 
surface tension of the interface orthogonal to n. One obtains in this way the 
shape which has the minimum surface free energy for a given volume. Being 
defined as the intersection of closed half-spaces, ~C is a closed, bounded, 
convex set (i.e., a convex body) and, since r (n )=  r ( - n ) ,  it has a center at 
the origin. 

Let Ao ..... A d E  R d be any set of d +  1 points in general position and, 
for i =  0 ..... d, let A~ be the ( d -  1 )-dimensional simplex defined by all points 
Ao ..... Ad, except A~. Let n~ be the unit vector orthogonal to A~ and IA,I the 
(d-1)-dimensional  area of A,.. Following ref. 3, we say that r(n) satisfies 
the pyramidal inequality if 

d 

Izlol r(no)~< )-'. I~,1 z(ni) (3) 
i = 1  

for any set Ao ..... An. We introduce the function on ~qa defined by 

f (x )  = Ixl r(x/Ixl) (4) 

It was proved !n ref. 2 that the pyramidal inequality for r(n) is equivalent 
to the condition that f ( x )  is a positively homogeneous convex function. This 
means that 

f (~x )  = ~f(x) (5) 

f ( x  + y) ~<f(x) + f ( y )  (6) 
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for any a >  0 and any x and y in R d. Since T(n) is bounded, the convex 
function f (x )  is everywhere finite and hence Lipschitz continuous. 

The pyramidal inequality may be interpreted as a thermodynamic 
stability condition and thus also the convexity of f (x) .  If one supposes that 
I~Jol r(no) is greater than the right-hand side of inequality (3), this would 
make the interface bounded by the sides of A0 unstable and difficult to 
realize. 

Some consequences of properties (3), (5), and (6) have already 
been discussed in refs. 1-3. Let us mention that among the functions 
which through (2) define the same shape ~//', there is a unique z(n) which 
satisfies the pyramidal inequality. Moreover, ~2) it turns out that f ( x )  is 
the Minkowski support function of the convex body "/F [i.e., f ( x ) =  
SUpye ~ x.  y]. 

Other consequences of the convexity properties, which will next be 
discussed, concern the formation of facets in the equilibrium crystal. The 
facets of a crystal have certain particular orientations. Let n o be one of the 
corresponding normals and place the coordinate axes (e j, e2, %) in such a 
way that no = (0, 0, 1 ). 

T h e o r e m  1. Consider the surface tension r(n) in dimension d =  3, 
and write r(0, ~b) = r(n) for n = (sin 0 cos ~b, sin 0 sin ~b, cos 0). Assume that, 
using (4), r(n) extends by positive homogeneity to a convex function on R 3. 
Then the following one-sided derivative exists: 

~(~) = (o/oo)o=o+ ~(o, 4,) (7) 

and, as a function/~(m) of the unit vector m = (cos ~b, sin ~b), extends by posi- 
tive homogeneity to a convex function on R 2. Moreover, if/~(~b + n) # -/~(~b), 
then the equilibrium crystal presents a facet, perpendicular to the (0, 0, 1) 
direction, whose shape is given by 

= { x e R  2: x.m~</a(m)} (8) 

i.e., by the Wulff construction applied to/l. 

Proof. In terms of the function f defined by (4), the Wulff shape (2) 
is the set of all x e R 3 such that 

xl Yl + x2Y2-b x3Y3 <~f(Y) (9) 

for all y. The plane x3 = r(0), where r(0) is the value of ~ for 0 = 0, is a 
tangent plane to ~r The facet ~ is the portion of this plane contained 
in -/Or. These facts follow from the convexity o f f  which implies that f is the 
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support function of ~ (otherwise, for a general z, it could happen that the 
plane does not touch this set). According to (9), the facet ~- consists of the 
points (x~, x2, r(0)) e R 3 such that 

x~ y~ + x2 Y2 <<- f ( Y l ,  Y2, Y3) - y3"c(0) = f(Y~, Y2, Y3) - Yaf(  O, O, 1 ) 

for all y. Or, equivalently, such that 

x l y l + x 2 Y 2 < ~ f S ( y l , y 2 ) = i n f [ f ( y l , Y 2 , Y 3 ) - - y 3 f ( O , O ,  1)] (10) 
Y3 

Restricting the inflmum to Y3 = 1/2/> 0 and using the positive homogeneity 
and the convexity off,  one obtains 

g ( y t , y 2 ) =  lim (1 /2 ) [ f (2y~ ,2y2 ,1 ) - f (O ,O,  1)] (11) 
2~0 ,2>~0  

Formula (11) implies that g is positively homogenous and, taking into 
account the convexity off ,  that g is a convex function on R 2. Define 

Iz(ff) = g(cos ~, sin r (12) 

From (11 ) and taking 2 = tan 0, one gets 

/~(~b) = lim (1/sin 0)[f(sin 0 cos ~b, sin 0 sin ~, cos 0) - c o s  Of(O, O, 1)-1 
0~0,8>~0 

= lim (1/0)[r(0,~b)-r(0)] 
0~0 ,0>~0  

and therefore the stated expression (7). This, together with the properties 
of g and definition (12), proves the first part of the theorem. 

To prove the second part, observe that, because of definition (12), 
condition (10) is equivalent to (8), which gives the facet shape. On the 
other side, from the convexity of g, it follows that 

- / z ( - m )  ~</.t(m) (13) 

Thus, the hypothesis #(@ + r~)# -/z(@) implies the strict inequality in (13) 
and shows, using (8), that the convex set ~ has a nonempty interior. This 
ends the proof of the theorem. 

Remark q. It is enough to know that the condition/~(~ + n) ~ -#(@) 
is satisfied for two different directions ~ to conclude that ~- has a non- 
empty interior, i.e., that it is a facet. Then, in fact, the strict inequality in 
(13) holds for any m, because of the convexity ofg. There are two other 
possibilities for the set ~-, considered as the intersection of ~ and the 
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tangent plane x 3 = r ( 0 ) .  Observe that  - / z ( - m )  coincides with the left 
derivative of  the surface tension, i.e., 

p ( - m )  = p(~bo + ~) = - ( 0 / 0 0 ) 0 = o -  z(O, (~) 

Therefore, if z(O, ok) has a cont inuous derivative with respect to 0, at 0 = 0, 
for some ~b = ~bo, then the set ~-  reduces to a segment. It  reduces to a point  
if this derivative exists for any ~b. 

Remark 2. If r(0, ~b) = z ( ~ - 0 ,  4) the crystal shape is reflection sym- 
metric with respect to the plane x 3 =0 .  Then p ( m ) = p ( - m )  and the facet 
~- has a center at the point P0 = (0, 0, r(0)). In the general case, however,  
the point  Po is not the center of  the facet. Po can also be outside ~- and 
in this case the range of p ( m )  includes positive and negative values. 

3. MICROSCOPIC THEORY: SOME DEFINITIONS AND 
RESULTS 

We consider a lattice spin system on a three-dimensional regular 
lattice i f ,  with configuration space 0 = { -  I, 1 } w. For  any A c ~ we 
write a(A)= 1-I~A ~r(i), where a( i )  is the spin at the site i. The interaction 
is a real-valued function on the finite subsets of  ~ .  The energy of  a con- 
figuration aA = {a( i)} ,  i~A, in a finite subset A c s under the boundary  
condition # ~ ~2, is 

HA(aA [ #)= -- ~ J(A) a(A) (14) 
A ~ A ~ f ~  

where a ( i ) =  #(i)  if i ~ A. The part i t ion function at the inverse temperature  
fl is given by 

Z~(A) = y '  exp[ --flHA(aA [ #) ]  (15) 
0",4 

We assume that  Y is an even, finite-range, t ranslat ion-invariant ,  and 
ferromagnetic interaction, i.e., J(A)=0 if A has an odd number  of  sites or 
if its diameter  is larger than some given length, J(A)=J(A + a )  for all 
a ~ L f ,  and J(A)>~O. 

We consider the case in which two distinct thermodynamic  phases 
( + )  and ( - )  coexist at the inverse temperaturef l .  This means two 
extremal translat ion-invariant  Gibbs  states, associated with the ground 
configurations ( + ) and ( - ) ,  for which 6(i)  = 1 and #(i)  = - 1 for all i t  .off. 
They correspond to the limits, when A ~ co, of  the finite-volume Gibbs 
measures ZO(A) -~ exp[--HA(aA]5)] with the boundary  conditions 6 
respectively equal to ( + ) and ( - ). 



Facets in the Equilibrium Crystal 191 

Consider a parallelepiped A of sides L1, L2, L3 parallel to the axes 
and centered at the origin o f L  a. Let n = (n~, n2, n3) be a unit vector in R 3 
such that  n 3 > 0, p .  is the plane or thogonal  to n and passing through the 
center of  A, and S . ( A )  is the area of  the por t ion of this plane contained 
inside A. Introduce the mixed boundary  conditions ( + ,  n) for which 
#(i)  = + 1 if i is above the plane p . ,  i.e., if i. n >~ 0, and #(i)  = - 1 if i- n < 0. 
The surface tension associated with the interface or thogonal  to n is defined 
by 

1 Z~• 
r(n) = lim lim - -  In (16) 

L , . L : ~ .  L3--~ f lSa (A)  Z + ( A )  

Such a definition is justified by noticing that  in (16) the volume con- 
tributions propor t ional  to the free energy of the coexisting phases, as well 
as the boundary  effects, cancel, and only the contributions to the free 
energy of the interface are left. 

The boundary  conditions ( +_, n) enforce an interface inside the box A. 
However,  with a probabil i ty  distribution given by the Gibbs  measure 
Z ~ •  e x p [ - - H a ( a A [  +__,n)], this interface may  undergo large 
fluctuations, so that  the corresponding Gibbs  state in the thermodynamic  
limit is translation invariant. On the other side, for some particular direc- 
tions no, it is possible that  the interface remains rigid at low temperatures 
and then the boundary  condit ion ( + ,  no) yields indeed a non-translat ion- 
invariant Gibbs  state. In this case, it is generally believed that  at higher 
temperatures,  but  still before reaching the critical temperature  tic of  the 
system, the interface no longer stays rigid. The system encounters the so- 
called roughening transition at a roughening inverse temperature  f i r  > tic- 
There is a quantity, called the step f r e e  energy,  which is expected to play, 
in the roughening transition, a similar role to that  played by the surface 
tension in the phase transitions. 

In order  to define this quantity,  let us place the coordinate axes in 
such a way that  no = (0, 0, 1 ). Denote  simply by ( + ) the ( + ,  no) boundary  
condition. Introduce the (step, m), or simply (step), boundary  conditions, 
associated with the unit vectors m = (cos ~b, sin ~b) e R z, by 

1 if i > 0  or i f i 3 = O a n d i x m l + i 2 m 2 > ~ O  
6(i ) = (17) 

-- I otherwise 

The step f i 'ee energy,  for a step or thogonal  to m (such that  mE ~ 0), is 

a c o s ~  Zs'~P( A ) 
C~P(~) = lim lira lira - - l n - -  (18) 

L, ~ ~ L,. ~ ~ L3 ~ ~ f iL l  Z •  

where the constant  a is the distance between the lattice layers or thogonal  
to n o . 
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Clearly, expression (18) represents the residual free energy due to the 
considered step, per unit length and unit height. Although the steps 
orthogonal to m and - m  have the same orientation, they are not identical 
(if one is "going up," the other is "going down") and hence the corre- 
sponding free energies "t'steP(m) and rst~ do not necessarily coincide. 

We next review some results proved in refs. 2, 9, and 15. First, it is 
shown that the surface tension exists and that it satisfies the stability condi- 
tion considered in Section 2. The other results concern the step free energy 
and the facet formation. 

Theorem 2. Under the hypotheses of this section, the surface 
tension r(n), defined by limit (16), exists, and coincides with the infmaum 
over Ll ,  L2, L3. Moreover, r(n) is bounded, nonnegative, and extends, 
through (4), to a positively homogeneous convex function on R 3. 

Proof. These statements have been proved in ref. 2 (Theorems 1 
and 3) using Griffiths correlation inequalities. 

Theorem 3. In the case of two-body attractive interactions, the 
one-sided angular derivative (7) of the surface tension and the step free 
energy (18) satisfy 

(0/o0)o=0+ r(0, r t> :'~162 (19) 

Proof Inequality (19) was proved in ref. 15 (Appendix 1) for the 
Ising model. With some small changes to adapt it to our notations, the 
same proof applies to the present case. Let Z• where u is a non- 
negative integer, be the partition functions Za(A) associated with the boxes 

A = { i ~ .2~: 0 <~ itml - -  i 2 m 2  <~ Ll ,  0 <~ ilm 1 + i2m 2 <~ L2, - L 3  ~< i3 ~< L3} 

with La>lau, and with the boundary conditions 6 ( i ) = 1  if p,(i)>~0, 
6 ( i ) = - 1  if p , , ( i )<0,  where p , ( i ) = i l m l + i 2 m 2 + i 3 t a n O  and t a n 0 =  
au/L2. For the same A, let Z,~( 1 ) be the partition function associated with 
the boundary conditions 6(i) = 1 if i 3 >/a(u - 1 ) and p,,(i) >/0, 6(i) = - 1 
otherwise, and let Z,+(0) be that associated with the condition # ( i ) =  1 if 
i3 >~ a ( u -  1), #( i )= - 1  if i 3 < a ( u -  1). Following ref. 15, we prove that 

Z +-(u)/Z +-(u- 1) ~< Z,~,(1)/Z,~,(O) (20) 

Observe that if we change, in the right-hand side of this expression, the 
boundary spins # ( i ) =  1 for i 3 >1 u -  1 into # ( i ) = -  1, we obtain the left- 
hand side. As a consequence of Fortuin-Kasteleyn-Ginibre inequalities, the 
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ratio of partition functions increases and thus inequality (20) follows. From 
it we get 

Z• +(0) <. f i  [Z,~, (1)/Z~(O)] (21) 
v = l  

We take logarithms in both sides of (21), multiply by -( l / f l ) (cos 0/L1L2), 
and let LI, L2, and Ls tend to infinity. Noticing that-(a/fiLi) In[Z)(1)/Z~(O)] 
should then tend to r s'~p (see also Remark 4 below), we obtain 

r(O, ~b) - r(O) i> sin 0 z'stcp(~) 

for 0/> 0, from which the stated inequality (19) follows. The theorem is 
proved. 

From Theorem 2 it follows that the conditions on the surface tension 
needed in Theorem 1 are satisfied. Then, if rStep(m) is strictly larger than 
- rs tep(-m) ,  Theorem 3 can be applied to show the existence of a facet 
orthogonal to n o in the equilibrium crystal. 

The next theorem concerns the case in which the system is reflection 
symmetric with respect to the plane x3=0.  In this case, rst~P(m)= 
rst~p(-m) and, taking inequality (19) into account, a facet is formed if 
"t'steP(m) > 0. 

T h e o r e m  4. Consider the case of two-body interactions and, for 
i=(i], i2, i3), let i' = ( i l ,  i2, --is). Assume that J(i,j)>~O, J(i,j)=J(i',j'), 
and that J(i,j)>>.J(i,j') for i3,j3 >10. Then, 

rst~p(m) i> ra=2(m) (22) 

where "t'd=2(m ) is the surface tension of the two-dimensional system on the 
sublattice i3 = 0, interacting through the same J(i,j) restricted to this sub- 
lattice. 

Proof. Inequality (22) was proved in ref. 9 (Section 6.2) for the Ising 
model. The following proof, nearer to the method of ref. 8, uses only 
Lebowitz inequalities of the first kind. Let a'(i) be the spin variables for the 
system restricted to the two-dimensional box Q={i~A:i3=O} and 
associate with.every i~A, with i3~>0, the spin variables s(i) and t(i) 
defined by 

s(i)=a(i)+cr(i'), t(i)=cr(i)--cr(i'), if i3>0 

s(i)=a(i)+cr'(i), t(i)=~r(i)--cr'(i), if is=O 
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Rewriting the products Z 1 = Z • ( A ) Z ~ • m)( Q ) and Z2 = Z step(A ) Z + (Q) 
as two partition functions in terms of these new variables, we can apply the 
first Lebowitz inequalities to show that Z~ >1 Z2, or, equivalently, that 

Zs'~P(A)/Z +(A) <~ Z ~ + " ) (Q) /Z  +(Q) 

This shows the validity of inequality (22). 

Remark 3. The above method can also be used to show the non- 
translation invariance of the Gibbs state associated with the (_+) boundary 
conditions, at low temperatures, and the rigidity of the corresponding 
interface (ref. 5, Part II, Appendix B). 

Remark 4. Similar arguments to those used in the proof of 
Theorem 4 show that Zs'eP(A)/Z +-(A) is, under the same conditions, an 
increasing function of L3 and L2 and therefore that the first two limits in 
the definition (18) of z-step exist. The same increasing property holds for 
noncentered boxes, provided that one is included inside the other (like 
those used in the proof of Theorem 3). 

Finally, we comment on some applications of these results. 

Example I. Let us consider the simple cubic lattice gas model (Ising 
model) with nearest neighbor attractions. At zero temperature, the Wulff 
crystal shape of this model presents six facets of type (001). In fact, one sees 
that, for no= (0, 0, 1), the conditions of Theorem 4 are satisfied. Hence 
z-steP(m) > 0 for all fl > tic.d= 2 (the critical inverse temperature of the two- 
dimensional model), since then z-a=2(m)>0. Indeed, one believes that 
z'step(m) > 0  for all temperatures below the roughening transition point. 
This last inequality, according to Theorems 1 and 3, shows the existence of 
a facet orthogonal to the direction no. 

Example 2. The Wulff crystal shape of the body-centered-cubic 
lattice gas model, with nearest neighbor and next nearest neighbor attrac- 
tions, presents, at low temperatures, 6 facets of type (100) and 12 facets of 
type (110). These facts follow, as above, from Theorems 1-4. A discussion 
on the roughening transition in this model may be found in ref. 17. 

Example 3. The last example is the simple cubic lattice gas model 
with nearest neighbor and next nearest neighbor attractions discussed in 
refs. 13 and 18. The Wulff crystal shape of this model presents, at zero 
temperature, 6 facets of type (100), 12 facets of type (110), and 8 facets 
of type (111). The existence, at low temperatures, of the first and second 
kinds of facets can be proved as before, although for no--(1 , 1, 0) the 
two-dimensional model considered in Theorem 4 has anisotropic coupling 
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constants. For no = (1, 1, 1 ), the system is not reflection symmetric and our 
results, and in particular Theorem 4, cannot be directly applied. Of  course, 
at zero temperature it is easy to see that the (111 ) facets exist and, in fact, 
playing with the values of the coupling constants, we may obtain in this 
case examples of all situations described in Remark 2. 

Actually, some more precise properties of the Wulff crystal shape can 
be stated. Let us explain this in the case of the first example. Let ~d=2 be 
the equilibrium crystal shape for the two-dimensional Ising model, and let 
~- be the facet, orthogonal to n 0, of the equilibrium crystal ~ associated 
with the three-dimensional system. Then inequalities (22) and (19) imply 
that the facet o ~ includes in its interior the set ~ =  z, drawn in the plane 
of ~-, at the same scale and with the same center and orientation. 

4. THE STEP FREE ENERGY AND ITS LOW-TEMPERATURE 
EXPANSION 

In the following we shall consider the Ising model on the simple cubic 
lattice ( ~  = Z 3) with nearest neighbor attractions, since the notion of con- 
tour, a basic notion for describing the system at low temperatures, is more 
transparent in this case. However, all considerations can be generalized to 
other ferromagnetic systems, like those considered in the examples of 
Section 3. It seems also that the main technique can be extended, after 
some additional work, to a more general class of systems covered by the 
Pirogov-Sinai theory. In the appendix, we review a number of results on 
low-temperature duster expansions that will be needed in the following 
discussion. We refer also to the appendix for the precise definitions of some 
notions used in this section. 

Let A be a parallelepipedic box with sides L~, L2, L3 parallel to the 
axes, and let # be either the (_+)=(+_,no),  or the (step) -- (step, m) 
boundary conditions introduced in Section 2. To any configuration inside 
A we associate, as explained in the appendix, the set of faces (or closed unit 
squares) separating opposite spins and decompose this set into an interface 

and a family of contours. By using the theory of cluster expansions, 
one can rewrite the partition functions Za(A), respectively, by means of 
expressions (A5) and (A6) in the appendix. 

The method for studying the statistics of the interface in the case of the 
boundary conditions t~= ( _ )  is also explained in the appendix. We dis- 
tinguish two t~pes of faces in the interior J ,  the wall faces and the ceiling 
faces, and denote by W ( J )  the set of wall faces. A subset w of W ( J )  whose 
orthogonal projection p(w) on the horizontal plane i3 = - 1 / 2  is a maxi- 
mally connected set is called a wall. By a vertical displacement these 
walls are then referred to a standard position. Taking the two-dimensional 
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projections of these standard walls for "polymers," the interface may then 
be studied by cluster expansion techniques. 

Let us now consider the interfaces associated with the boundary con- 
ditions # =  (step). When we decompose, as above, the projection of W ( J )  
into maximally connected components, there is exactly one of these com- 
ponents which is infinite and all other components are bounded. The subset 
of W ( J )  which projects into this infinite component will be called S, the 
step. The complementary set of S in W ( J )  can be described as a family of 
walls. In this way we associate with every interface J a step S and an 
admissible family W of standard walls compatible with the step (i.e., their 
projections and the projection of the step are disjoint). The converse is also 
true: For any step S (compatible with the boundary conditions) and any 
admissible family W of standard walls such that p(S) n p( 140 = ~ ,  one can 
reconstruct in a unique way the interface. This interface will be denoted 
by J(S, W). 

Consider the system in an infinite cylinder Ap of base L~ x L 2 by 
taking the limit L 3 ~ ~ ,  and introduce the ratio of partition functions 

e-Z#SL'L"Q'teP(Ap) = lim [Z'teP(A)/Z +(A)] 
L 3 ~ o o  

(23) 

Following the same computations that lead to formula (A6) in the 
appendix, one gets the following result: 

Proposi t ion  1. The partition function in (23) is 

QStep(Ap)=Z e-ZPJIIsll Z 1--[ ~kz(w) 
S W w e  W 

p ( w )  ~ p ( S )  = 

F 
r c~ J ( S ,  gO = ~2~ 

In this expression, the first sum runs over all steps associated with the 
given boundary conditions, and IISll is the excess area of the step [number  
of faces of S inside A, minus number of faces ofp(S) ] .  The second sum runs 
over admissible families W of standard walls and ~b 2 is the activity of a 
wall. The sum in the exponential runs over clusters of contours F, and ~ 
are the corresponding truncated functions. 

The purpose now is to write a new expression for the partition func- 
tion QStep(Ap) using the notion of aggregates of walls and contours. In the 
case of the boundary conditions # =  ( _ )  this notion, as explained in the 
appendix, allows one to reduce the analysis of the interfaces to the study 
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of a polymer system. Let us first develop Qstep in terms of decorated 
interfaces, as one does for Q• In the present case, however, a new 
special aggregate, including the step, has to be introduced. We shall call it 
the extended step. The extended step is a triplet ~=(S ,  ~', ~") made with 
the step S itself, the set ~' of all walls, and the set ~" of all clusters of the 
decorated interface, such that their projections p(S), p(~'), and p(~") form 
a connected set (on R2). We extend the definition of the function ~3 (the 
activity in the case of aggregates) to the extended step, by putting 

O3(~)=e-2Psllsll 1-[ O2(w) I-I q~l(F) 

where q~ is given by definition (A9). Then, the expression 

Qs'~ = ~ 4'3(~) [ 2 l-[ ~3(cc)] 
A ~ A  

pCA) np(~) = 0 

A 

(25) 

QStep(Ap)/Q• ~ O3(~)exp [ - Y" O3a-(A)J (26) 
A 

p( ,4  ) r ~ p ( ~ )  = O 

In order to develop the analysis of the step free energy, we shall con- 
sider the system in an infinite band Aq of width L1, by taking the limits L2 
and L3 tending to infinity. The absolute convergence of the series 
Z~,0O3X(A), discussed in the appendix, implies the existence of the 
following limit: 

�9 lim [ QSt~p(Ap)/Q • ] = e-Z#SL'Dst"p(Aq) (27) 
L2 ~ oo 

The proof of this fact is analogous to the proof in ref. 5 conceming the 
existence of (A7). Limit (27) is given by the same expression (26) where the 
implicit restriction A c Ap in the second sum is replaced by A = Aq. 

p ( A )  n p ( ~ )  = 0 

follows. Here the first sum in the first and second equalities runs over all 
extended steps associated with the given boundary condition, the second 
sum in the first equality runs over admissible families of standard 
aggregates, and the second sum in the second equality runs over clusters of 
standard aggregates. The ~ represent the truncated functions for these 
clusters. Then, from (25) and (A14), the following proposition follows. 

Proposition 2. With the above notations, we have 
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Expression (26) is the starting point of the analysis of the step free 
energy by cluster expansion techniques. We remark the similarity between 
expressions (26) and (A8) and, as in the previous discussion on the ( + )  
interface, we introduce a description of the extended step in terms of 
elementary excitations, analogous to the walls. These excitations will be 
called step-jumps. 

For this purpose we distinguish two types of faces on the extended 
step ~, the excited and the nonexcited faces. Given a facefwhose horizontal 
projection is p( f ) ,  let 2(f )  be the orthogonal projection o f p ( f )  on the line 
iz = -1/2 ,  i 3 = -1/2.  For any face, 2(f )  is either a point or a unit segment 
on this line. A face f E  ~ is a nonexcited face if the following condition is 
fulfilled: f belongs to the step S associated with the extended step 4, f is 
parallel to the (i2, i3) plane, and there is not other face g e ~ such that 
2 (g )=2( f ) .  The other faces of ~ are said to be excited. The set of all 
excited faces is denoted by J((). 

A subset j of J(~) such that 2(j) is a maximally connected set (on R), 
is called a step-jump. Since 2(j) is a segment (or reduces to a point), there 
are always two nonexcited faces f~ and f2 belonging to S such that the unit 
segments 2(fl) and 2(f2) are adjacent to 2(j). Assume that 2(ft) and 2(/'2) 
are ordered according to their i~ coordinate. The horizontal projections 
p(f~) and P(f2) of these faces are two unit segments parallel to the i~ axis 
on the plane i3 = -1/2 .  Let i2(f~) and i2(f2) be the values of the i 2 coor- 
dinate of these segments. The difference h ( j ) =  i 2 ( f l ) -  i2(f2) will be called 
the height of the step-jumpj. By translating the step-jump along the i2 
direction in such a way that i2(f~) becomes equal to -1 /2 ,  one obtains the 
associated standard step-jump. 

For any extended step ~ whose excited faces form the set J(~), let us 
decompose the one-dimensional projection 2(J(~)) into maximally con- 
nected components. The subsets of J(()  which, by means of 2, apply to 
these components are the step-jumps associated with ~. Let J =  {j~ ,...,j,,} be 
the set of the corresponding step-jumps. In this way, with every extended 
step a family J of standard step-jumps with pairwise disjoint 2-projections 
(also called an admissible family) is associated. Moreover, if the boundary 
condition is (step)=(step, m), with m=(cos~b, sin~b), these families 
satisfy 

h(J) = h(j~) + ... + h(j2) = N (28) 

where N is the largest integer not exceeding L~ tan ~b (the integer part of 
L~ tan~b). Conversely, for any admissible family of standard step-jumps 
satisfying condition (28), one may reconstruct in a unique way the 
extended step. This extended step will be denoted by ~(J). 



Facets in the Equilibrium Crystal 199 

Recall that a step-jump j is a triplet consisting of a set of faces j c~ S 
on the step, a se t j '  of walls, and a set j "  of clusters of standard aggregates. 
Let IlJll be the number of faces in jc~S, minus the number of faces in 
p ( j n  S), minus the length of 2(j n S). Define the activity of the step-jump 
j by 

~ k 4 ( J )  - - e - 2 p J l l j l l  I - I  111:2(w) I--[ ~1(-F')  
w ~ j  P F E j  n 

Using the above description of the steps, we obtain the following 
proposition. 

Proposition 3. The partition function in (27) is 

Q':t+r""'(Aq) = X I1 ~k,( j )exp[- -  X ~k:(A)] (29) 
J jc~d A 

h(d) = N p(A)  ~p(~)  :/= 

where the first sum runs over admissible families of standard step-jumps 
and the second over clusters of aggregates. 

Therefore, t2 <step'm), also to be denoted by ostep ==N , can be interpreted as 
the partition function of a "gas of particles" on a one-dimensional lattice. 
The "particles" are described by some three-dimensional objects (the step- 
jumps j) ,  and interact through the exclusion of their one-dimensional 
projections 2(j) and through an effective energy given by the argument 
of the exponential. Expression (29) is formally identical to the partition 
function which can be associated with the surface tension of the two- 
dimensional Ising model, first studied by Gallavotti <16) and more recently 
in the work by Dobrushin et al. <]~ (see Section A.5 in the appendix). The 
interfaces of the two-dimensional Ising model can also be described by a 
one-dimensional "gas of particles," though these "particles" are two- 
dimensional, instead of three-dimensional objects, and the activities and 
interactions differ. It may be expected, however, that the same methods 
apply to the present case. 

We are going to follow the method used in ref. 1. First, a new notion 
of aggregates, which will be called step-aggregates, is introduced. They 
consist of step-jumps and the already considered aggregates of walls 
and clusters, and are made in such a way that the 2-projection of a step- 
aggregate is a connected set (in R). With any step-aggregate`9 one 
associates an activity ~5(`9) obtained in the standard way (appendix, 
Section A.4) from the activities $4 of the step-jumps and the truncated 
functions $~ for the clusters of the old aggregates (of walls and contours). 
One associates also, with any step aggregate, a height h(`9), defined as the 
sum of the heights h(j) of the step-jumps belonging to ,9. 

822/79/1-2-14 
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Proposition 4. With the above definitions, expression (29) 
becomes 

~ s t e p /  .4 
,~ , . .q,= X I-I ~5(0) (30) 

0 O e O  
h ( O )  = N 

where the sum runs over admissible families O of standard step-aggregates, 
h(O) = Z s E o  h(0), and N is the integer part of L1 tan ~b. 

The essential point which has to be verified in order to apply the 
method of ref. 1 is the convergence of the sum 5-'.,0E~ 1~5(0)1 over all step- 
aggregates that contain a given point. Define the order of a step-aggregate 
0 as the degree of ~hs(0) in the variable z = e -zas. From the definitions 
above and the connexity of the step-aggregates, it is not difficult to verify 
that the number of step-aggregates of order n (modulo translations) is 
bounded by a combinatorial factor of the form K", where K is a given 
number. This implies the convergence of the above-considered sum for fl 
sufficiently large. 

Now, most of the results and proofs in ref. 1 (Chapter 4) concerning 
the surface tension in the two-dimensional Ising model can be extended to 
the problem of the step free energy considered here. We shall not repeat 
all the proofs, which can easily be translated to the present case. Let us 
mention, however, how the cluster expansions and the truncated functions 
are introduced. One defines a new partition function, depending on the 
parameter u ~ R, by 

•r step , (Aq)= Z eP"Na~P(Aq)=~ [-[ ~hs(O)ea"h(~ 
N ~ Z  0 , gEO 

(31) 

We can interpret (31) as a "grand canonical" partition function with 
respect to the step boundaries, and the restriction in the sum (30) as a 
"canonical" constraint. Since the partition function (31) describes a system 
of "polymers" interacting only through exclusion, the standard cluster 
expansion techniques can be applied. One introduces, as usual, the 
activities ~kr(0)= ~5(,9)e #uh(~ of these polymers, the Boltzmann factors, 
and, by means of formula (A4) in the appendix, the truncated functions 
$6a'(O) for clusters of standard step-aggregates. Then 

l-2~t~P(Aq)=exp [ ~o ~bT(o) 1 (32) 

where the sum runs over all clusters inside hq. The main result of the 
theory implies that the power series (in the variable z = e -2ps) defmed by 
the sum Z,o ~ o ~kr(O) is absolutely convergent, provided that fl > rio, where 
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ilo > 0 is some constant. This result implies, in particular, the existence of 
the free energy associated with the grand canonical partition function 

1 g(u) = L,-, oolim - ~ In [e2pJLl~)suteP(Aq) ] (33) 

and leads to the following results. 

T h e o r e m  5. If the temperature is low enough, i.e., if il >~ilo, where 
ilo > 0 is a given constant, then the step free energy r step defined by limit 
(18) exists, is strictly positive, and is given by 

rs'eP(~b) = [ g(u~) + u~ tan ~b] cos ~b (34) 

where g(u) is defined in (33) and u~ is the (unique) solution of the equation 
tan ~b + Og/Ou = O. Moreover, 

z~t~p(m) = 2J(lm, I+  Im21)-(1/ i l ) [ ( Im,  I+  Imzl)ln(lmt I+  Imzl) 

--Imx I lnlm~ l--[m2[ inlm21 ] -- (1/il) ~0m(il ) (35) 

where ~o m is an analytic function of z = e -zpJ for Izl ~ e-2a~ whose corre- 
sponding power series can be computed by cluster expansion techniques. 

Proof. The theorem is proved analogously to Proposition 4.12 of 
ref. 1. 

Notice that the function 

T~teP(v) = lira - - ( l / i lL,)  in[e2pJL'..QS~.ep(Aq)] 
L l  ~ o o  

where N is the integer part of L ~ v, can be obtained, according to the equiv- 
alence theory of canonical and grand canonical ensembles, as the Legendre 
transform of g(u). On the other hand, from the above definitions, one gets 
zstep(~b)/cos ~b = z~teP(tan ~b). From these facts expression (34) follows. 

The first two terms in (35), which represent the main contributions for 
i l ~  ~ ,  come from the ground state of the system under.(step) boundary 
conditions. The first term can be recognized as the residual energy of the 
step at zero temperature and the second term as -(1//3) times the entropy 
of this ground state. The same two terms occur in the surface tension of the 
two-dimensional Ising model (19) and are also a consequence of the method 
developed in ref. 1. This method can also be applied to our case and 
consists in splitting up the set of step-jump into those that are typical for 
low temperatures (called in ref. 1 "tame animals") and those that can be 
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interpreted as excitations appearing at not vanishing temperatures ("wild 
animals"). This distinction is also useful for computing by means of 
relations (32)-(34) the coefficients of the series ~0 m. 

By considering the lowest energy excitations, it can easily be seen that 
r is O(e-4Pl), because the series begins with the term in z 2, and also that 
the first term in which this series differs from the series associated with the 
surface tension of the two-dimensional Ising model is O(e-12PJ). 

Theorem 6. Under the conditions of Theorem 5, the function 
f s tep(x)  = ~st~ defined for all x e R 2, is positively homogeneous and 
convex. 

Proof. The convexity of g(u), which can be proved from (31) and 
(33), implies the convexity of its Legendre transform zp(v), and from this 
the theorem follows. See ref. 1 (Theorem4.21) for a detailed analogous 
proof. 

Remark 5. In fact, under the same conditions, the functionpt~p(x) is 
strictly convex. This means that zstep(m) satisfies the pyramidal inequality 
(or, in d =  2, the triangular inequality) in its sharp form, i.e., the equality 
occurs in (3) only for degenerated triangles of zero area. See also ref. 1 
(Theorem 4.21 ). 

Remark 6. The thermodynamic limit of the step free energy can 
also be obtained under more general conditions (on the way in which the 
boxes tend to infinity) than those specified in definition (18). See ref. 1 
(Theorem 2.2) for an analogous result. 

Remark 7. Another consequence of the above analysis is that the 
step S, even for m = (0, 1), undergoes large fluctuations at nonzero tem- 
peratures. See refs. 16 and 1 (Propositions 4.9 and 4.10) for analogous 
results on the interface of the two-dimensional model. It follows from this 
fact that the Gibbs states associated with the (step) boundary conditions 
are invariant under the translations parallel to the (il, i2) plane. 

5. THE STEP FREE E N E R G Y  A N D  THE FACET SHAPE 

A serious difficulty facing the attempts to generalize the work by 
Dobrushin et aL to the three-dimensional Ising model is the fact that one 
needs a very accurate description of the partition functions yielding the 
surface tension for any orientation n. This is comparatively easy in the two- 
dimensional case in which the walls are on a one-dimensional lattice 
(appendix, section A.5). In the three-dimensional case the same approach 
leads to difficult problems of random surfaces. The exception is the case of 
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an interface oriented along the axes of the lattice, which has been proved 
to be rigid at low temperatures. Only in this case, say for n = n o = (0, 0, 1 ), 
does the surface tension z(n) admit a low-temperature expansion (appendix, 
Section A.3). Nevertheless, the methods developed in Section 4 can be used 
to control in some sense the interfaces whose orientations are close to the 
orientation of this rigid interface. This allows us to derive the following 
result, whith which we come back to the initial problem of describing the 
equilibrium shape predicted by the Wulff construction. 

T h e o r e m  7. Under the conditions of Theorem 5, 

"r~'~ = (a/00)o=o+ ~(r 0) (36) 

i.e., the step free energy equals the one-sided angular derivative of the 
surface tension considered in Theorem 1. 

Proof. The proof will be given in Section 6. 

An intuitive argument for this result has been described in the intro- 
duction. The observation made in Remark 6 provides a new ingredient 
which will be important for the proof. 

It is natural to expect that the equality (36) is true for any fl larger 
than fiR (the roughening inverse temperature), and that for fl<~flR, both 
sides in (36) vanish. Since in this last case, the angular derivative of r(~b, 0) 
is continuous at 0 = 0, the disappearance of the facet is involved. 2 However, 
the condition that the inverse temperature fl is large enough is important 
in our discussion. Only when it is fulfilled do we have the full control on 
the equilibrium probabilities that is needed in the proofs. 

It has been shown in Theorem 1 that the facet ~ in the Wulff 
equilibrium crystal is determined, through (8), by the one-sided angular 
derivative of the surface tension. We see, taking Theorem 7 into account, 
that the shape of the facet is obtained by applying the two-dimensional 
Wulff construction to the step free energy. Namely, 

= {xe  R 2 : x.m~<rstCPim)} (37) 

Here the inequality is assumed for each unit vector x ~ R 2. As a conse- 
quence of Remark 5 it follows that ~- has a smooth boundary (with a 
continuous tangent) without straight segments. Therefore, the equilibrium 
crystal has necessarily rounded edges and comers. 

2 These facts can be proved for certain solid-on-solid models of interfaces using correlation 
inequalities.(2~ 
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Moreover, according to Theorem 5, we may use a convergent expan- 
sion to compute the function rSt~p(m) for all m and hence to determine the 
facet shape (at any given temperature fl/> flo). From the observation made 
after Theorem 5, it follows that the difference between ~ and the equi- 
librium shape of the two-dimensional Ising model at the same temperature 
is O(e-lZP~). Actually, the computation is easier using the "grand 
canonical" free energy g(u) defined in (33). The graph of this function, as 
noticed by Andreev for the usual Wulff construction (see refs. 13 and 2, 
Theorem 4), coincides with the shape of the facet boundary. 

6. PROOF OF THEOREM 7 

In order to simplify the notations, Theorem 7 will be proved in the 
particular case ~b = 0. Using the appropriate geometrical setting, the proof 
extends without any difficulty to the general case. The main observation is 
the fact that Theorem 4.2 of ref. 1, which we shall borrow at some point of 
the proof, can also be applied when ~b ~0.  For q~=O, we write r(O)= 
r(O, 0), r st*p = rst~p(o), and n = (cos O, O, sin 0), and introduce the notation 

cos 0 Q(• (37) 
r(O;Li,L2)= [3L1L,~ln Q+(As, ) 

for the surface tension of the finite system. The proof comprises four steps. 

Part 1. The convexity properties of the surface tension (see the proof 
of Theorem 1) imply that 

(3r/30)o=o+ = inf ( 1/tan 0)[((r0)/cos/9) - r(0)] 
0>~o 

Moreover, as mentioned in Theorem2,  the infinite-volume limit r(0) 
coincides with the infimum over (L~, L2) of r(0; L~, L2). From these facts, 
one obtains 

(3r/aO)o=o+ <~ (1/tan 0)[ (r(0; L , ,  L2)/cos O) - r ( 0 ;  L , ,  L2)] 

+ (1/tan 0)[r(0; LI, L,_) - r(0)] (38) 

The factor in the first term of (38) is 

r(0; Ll ,  L2) r(0; Ll ,  L2) = 1 In Q(+-'")(Ap) 
cos 0 fiLl L2 Q+-(Ap) 
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The factor in the second term may be bounded (for f l>flo) using the 
convergent cluster expansion of z(0). Indeed, expression (A14) in the 
appendix implies that 

~< Li + L2 K (39) 
It(0; L~, L 2 ) -  ~(0)1 LIL2 

where K =  K(fl)> 0 does not depend on LI or L2. 

Part 2. After these observations we are going to analyze the parti- 
tion function Q(+'")(,'lp) and the associated interfaces. First, let us consider 
the simplest case, fl = oo. In this case, the interface, which has the minimal 
area, looks like a perfectly regular stair with rectilinear steps of height one. 
There are k steps, with k equal to the integer part of L2 tan 0, separated by 
a distance b, nearly equal to 1/tan 0. For f l > 0  some deformations will 
appear, either in the flat portions of the interface or on the steps, and also 
several steps may merge into a larger one. In fact, the situation can again 
be described by the method used in Section 4, a description which will 
make sense for large fl and very small 0. Let W(J)  be the set of wall faces 
of the interface J under consideration, and let p ( W ( J ) )  be the projection 
of this set on the plane re. Decompose p ( W ( J ) )  into maximally connected 
components (in R2). A number k' of these components, with 1 ~< k' ~< k, are 
infinite, and the others are bounded. The infinite components are the 
projections of certain subsets S~ ..... Sk, of W(J)  which will be called steps. 
The bounded components are the projections of walls. Using the above 
notations, we may write 

k 
Q(+'")(Ap) = ~, ~" e-ZpJ(llS, ll+ ... +llSk.ll) 

k ' = l  SI,...,Sk' 

x E [I  2(w) 
W wE W 

p( W ) ~ p ( S I ) ~  ~ , l =  l,...,k" 

F 

(40) 

F ~  J ' (Sb.. . ,Sk' ,  ~ ffi 0 

The first sums in (40) run over all sets of steps with pairwise disjoint 
projections. We use J(S~ ..... Sk,, W) to denote the interface associated 
with the considered steps and the admissible family W of standard walls. 

Part 3. Since all terms are positive, the value of (40) decreases if the 
sum is restricted to the terms containing exactly k steps and, moreover, it 
is required that these steps do not go too far from the corresponding steps 
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S O ..... S O at fl = oo. Namely, if At(b') is the set of points (in R 3) whose 
projection on n is at a distance less than b' from p(S~ it is required that 
S~cA~(b/4) for every 1= I ..... k. Next one introduces, as was done before 
for QStep, the aggregates of walls and contours and the extended steps. Let 
~1 ..... ~k be the associated extended steps. A similar restriction to that 
required on the steps is now required on the extended steps. Namely, we 
require that ~ t c  At(b~3) for every 1= 1 ..... k. Taking into account that the 
extended steps which do not fulfill this condition are such that 

I~O3(~)l ~< exp( -2flJ [ISII) exp[ -2flJ(b/12)] (41) 

one obtains, for the ratio of partition functions, 

Q'•176 [ ] 
Q+(Av) >/ Z ~k3(~1)..-1~3(~k) exp -- ~ ~k3r(A) 

~J ,..., Ck A 
~t= zlt(b/3),l= 1,...,k 31,p(A) ~P(~l) ~ (~ 

• exp[ -kLl O(e-r ] (42) 

The first sum in (42) runs over the extended steps satisfying the condition 
above. The last factor is a bound on the error, derived by using (41) and 
summing over all remaining extended steps. Next, the sum in the exponen- 
tial in (42) is restricted to the aggregates A for which there is some ! such 
that A c Al(b/2). This means that some large aggregates are neglected, but 
the error is still bounded by a term of the same order as before. After that, 
expression (42) factorizes and, again up to an error of the same order, one 
gets 

Q(• >_ r o,,o,,(.,,_; ) ] _, ) ] 
~L ~ J  exp[-kL, O(e 

where Ap is an infinite cylinder of base L~ x b. By taking logarithms in both 
sides of this expression, using formula (37), and replacing k by its value 
L2 tan 0, we obtain 

r(0; Ll ,  L2) 
cos 0 

Q (Ap) , t~__0 r(0; Lt ,  L 2 )  ~< tan 0 step , - - - -~- i  In ~ -r O(e -(I/3)BJb) (43) 

Part 4. Now, using inequalities (38), (39), and (43), we obtain 

(Or) <<.1 QSter'(A;) +~O(e_(~/3)asb)+L,+L 2 
o-o+ ~ -~ ln  Q+(A;) Z, L2 Kb (44) 
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The fight-hand side of this inequality is a function of L1, L2, and 
b = 1/tan 0, which will be replaced by its minimum value. According to 
Theorem 5, the first term tends to "c st~p in the limit when first b and then 
L1 tend to infinity. However, as noticed in Remark 6, the same statement 
is true under r more general conditions, and, in particular, by adapting to 
the present case the proof  of Theorem 4.2 in ref. 1, one sees that the same 
limit is obtained if one takes b=L~,/2+~, with e > 0 ,  and then lets L,--* oo. 
By choosing 0 < e <  1/2 and taking successively the limits L 2 --* ~ and 
L,--* oo in (44), we see that the last two terms in the fight-hand side 
vanish, and we obtain 

(a~/00)o=o§ ~< r s'ep 

This inequality, together with Theorem 3, ends the proof  of Theorem 7. 

We notice that the arguments above have some similarities with those 
used in ref. 21 to show Antonov's rule, though, instead of a large number 
of steps, only two interfaces had to be considered for this purpose. 

A P P E N D I X  

We summarize here some basic results, mainly adapted form refs. 22, 
5 (part III) ,  6, and 16, which are needed in Sections 5-7. We consider the 
Ising model on the simple cubic lattice 3,  = 7/3. Two nearest neighbor spins 
a(i) and a ( j )  interact with attractive energy - J ( a ( i ) a ( j ) - 1 )  and J > 0 .  
Considering 3 '  as a set of points in R 3, we associate with each pair <i,j> 
of nearest neighbor sites the closed unit square (also called face) 
orthogonal to the segment i,j and passing through the middle of this 
segment. Let ~ be the set of the nonempty connected (in the sense of R 3) 
sets of faces. 

Given a configuration a A =  {a(i)}, ieA,  in a box A with boundary 
conditions Se t2 ,  we define Xe(aA) as the set of faces associated with 
the nearest neighbors < i,j > with opposite spins, the configuration being 
extended to the whole lattice by using the boundary condition [i.e., 
a(i)  = #(i) if i r  We assume that A contains the face associated with 
< i,j > if and only if at least one of the two sites belongs to A. Then the 
energy HA(crA, 5) is equal to --2flJ times the number of faces in 
X~(~A) c~ A. 

A.1.  C o n t o u r s  

Consider the system in the box A with ( + )  boundary conditions. 
A finite set 7 e ~ is a contour if there exists a configuration aA in A (which 
then is unique) such that 7 = X + ( a a )  �9 An admissible family of contours is 
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a set of pairwise disjoint contours. For any configuration aA in A, the set 
X+(a,~) splits into maximally connected components 7~ ..... 7, which are 
pairwise disjoint contours. Therefore, there is a bijection between such 
configurations and the admissible families of contours inside A. 

Let the area 171 of a contour be the number of faces of 7 and let its 
activity be ~kl(7)= exp( -2f l J  171). Then, the partition function becomes 

Z + ( A ) = ~  H ~b,(7) (A1) 
F ) , ~ F  

where the sum runs over all admissible families of contours in A. Expres- 
sion (A1) shows that the system is equivalent to a polymer system, i.e., to 
a gas of several "species of particles" (all contours modulo translations), 
interacting only through hard-core exclusion and having the activities 
~1(7). The properties of polymer systems may, under appropriate condi- 
tions, be studied with the help of cluster expansions. They lead to con- 
vergent expansions in the small-activity region. To develop the theory of 
these expansions we shall use the method of ref. 21. 

For this purpose we consider also nonadmissible families of contours, 
including families in which a contour occurs several times, identified with 
the nonnegative integer-valued functions F on the set of contours, such 
that ~ .  F(7) < oo [F(7) is the multiplicity of the contour 7 in the family]. 
Let ~ be the set of all these functions, and define (/"1 + / " 2 ) ( 7 )  = 

F~(7) + F2(~). We shall also use the notation F, when no confusion arises, 
for ),~ u ..- w 7,, considered as a subset of R 3, where 71 ..... 7, are all the 
contours for which F(7i) ~ 0. 

The Boltzmann factor is extended to ~ / b y  putting 

O,(r)= [I ~'1(7) (A2) 
),~ F 

if F is admissible, and ~ I ( F ) = 0 ,  otherwise. The truncated functions are 
defined on J / b y  

~h;(F)= ~ ( - - 1 ) ' + ~ "  f l  ~hl(F;) (A3) 
n = l  n i ~ 1  

where Z '  represents the sum over all F~ ..... Fn such that F~r ~ and 
~. Fi=F. 

A first important consequence of definition (A3) is that ~ ,T(F)#0 
only if F is connected. A second consequence is the expression 

Z +(A) = ~" ~(F)=exp [ ~r ~k (A4) 
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The connected /" will be called clusters (of contours). The expansions in 
terms of the functions qJ~X(F) are the cluster expansions. The main theorem 
of the theory states that there exists flo > 0 such that if the inverse tem- 
perature fl is larger than flo, then the sum ~to~r~kT(F), which runs over 
all clusters containing the point t o = (1/2, 1/2, 1/2) (considered as a power 
series of the variable z = e-Z/3s), is absolutely convergent. This implies the 
existence and analyticity of the free energy cpp=lima~oo--(1/f l lAI)  
In Z ~ § as well as analyticity and cluster properties for the correlation 
functions. 

A.2. Interfaces 

Consider the system in a box A with mixed ( _ ,  n) boundary condi- 
tions. Given a configuration aA in A, we decompose the set Xr into 
maximally connected components. There is exactly one component which 
is infinite when the configuration is extended to the whole lattice using the 
boundary conditions. We call this component J ,  the interface. All other 
components are contours. 

The possible interfaces are the sets J ~ ~ for which there exists a aA 
such that J = X (• A contour ~ and the interface J are compatible 
if they do not intersect. Let IJI be the number of faces of J (inside A). 
Taking (A4) into account, one obtains the following expressions for the 
partition function: 

Z(+'")(A)=~exp(-2flJlJ])[ ~ ~II(F) 1 
J F o J = ~  

= ~ exp(-2flJ [J[)exp [ ~ ~kT(F)] (A5) 
J F c ~ J = O  

where the first sum runs over all interfaces J compatible with the 
boundary conditions. Then, from (A1) and (A5), it follows that 

Z(+'")(A)/Z+(A) = ~ e x p ( - 2 f l J ~  1~r exp - r ~  o 

In order to analyze the interface, we consider the system in an infinite 
cylinder Ap of. base Li x L2 by taking the limit L 3 ~ m. The absolute 
convergence of the series of truncated functions implies the existence of the 
following limit for the ratio of partition functions: 

lim [Z(+.")(A)/Z+(A)]=e-ZPscL'L2/"~)QC+,")(Ap) (A7) 
L 3 ~  
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(see the proof in ref. 5, Part  III).  The limit is given by the same expression 
(A6), where the implicit restriction F c  A in the second sum is replaced by 
F c  Ap. 

A.3. Walls 

Consider the case n = "o = (0, 0, 1), which defines the (__+) boundary 
conditions. Let n be the horizontal plane i3 = - 1/2 and p(.  ) the orthogonal 
projection on this plane. The projection p ( f )  of a face f is either a face or 
an edge. There are two types of faces in an interface J :  The ceiling faces, 
which are the horizontal faces f such that there is no other face g in J such 
that p ( f ) = p ( g ) ,  and the wall faces, which are all other faces in J .  The set 
of wall faces is denoted by ~r 

A set w of wall faces whose projection p(w) ~ ~ is called a standard 
wall if there exists an interface J such that w = ~r A family of standard 
walls is admissible if the projections on rc of these walls are pairwise 
disjoint. It will be seen that the interfaces can equivalently be described by 
the admissible families of standard walls. 

We observe that any interface J decomposes into walls, which are the 
subsets of r  which are projected into the maximally connected com- 
ponents of the projection p (~ / r ( j ) ) ,  and ceilings, or connected sets of 
ceiling faces. Given a wall w, consider the set B of faces on n which do not 
belong to p(w), and decompose B into connected components. To each 
component there corresponds one ceiling adjacent to w which projects into 
this component. The ceiling which projects into the unique infinite compo- 
nent of B is called the base of w. Since the base of a standard wall lies on n, 
one can associate with any wall w the standard wall which is just the 
vertical translate of w with base on re. In this way, one associates with 
every interface a family of standard walls having disjoint projections on z~. 
The converse is also true: For  any family W of standard walls with pairwise 
disjoint projections one can reconstruct in a unique way the interface. This 
interface will be denoted by J ( W ) .  

Let Ilwll, the excess area of a wall, be the number of faces of w minus 
the number of faces ofp(w),  and let @2(w) = e x p ( - 2 f l J  Ilwll) be the activity 
of w. Given an admissible family W of standard walls, we denote by J ( W )  
the corresponding interface and observe that [ J (  W)[ =L1L 2 +~.,we w Ilwll. 
Then expression (A6) becomes 

W w e W  F n J ( W ) ~ O  

where the first sum runs over all admissible families of standard walls 
in Ap. 
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In expression (A8) the interface has been rewritten in terms of a gas 
of walls and thus can be viewed as a model over a two-dimensional lattice. 
The second factor in (A8) gives an effective interaction between walls. 
A theory of cluster expansions may be developed for this system either 
directly, as in ref. 5, or, equivalently, by transforming it into a polymer 
system. This last method, which was used in ref. 6, will be described in the 
following subsection. 

A.4.  Aggrega tes  

We are going to rewrite Q• as a sum of certain elements, which 
we call decorated interfaces, and are defined as the pairs ( J ,  T), where ~" 
is an interface and T a finite set of clusters, such that F c~ J # ~ for every 
F ~ T .  

Given an interface J or, what is the same, an admissible family of 
standard walls W such that J = J (  gO, we consider the corresponding term 
in the sum (A8). We define 

~ l ( F )  = e-)T(r) _ 1 (A9) 

and expand 

[ ~ ~T(F) ]  = 1-[ [ I + ~ ( F ) ] = ~ ]  l-I q ~ ( F ) ( A 1 0 )  
exp - - r~  ~ r ~ . r  r F~T 

where the last sum runs over all sets T of clusters such that all elements F 
of T intersect J ( IV) .  This leads to the expression of the partition function 
as a sum over the above-defined pairs 

Q• ~'  l-I ~k2(w) YI ~,(F) (Al l )  
( W , T )  tt, e W  F e T  

Let ( J ,  T) be a decorated interface and let ct be a pair ~ =  (ct', ct"), where 
0c' is a subset of the set of walls of J and ~" is a subset of T. We shall also 
use the notation a = a'  u 0c" for the union (as sets in R 3) of the walls in ~' 
and the clusters in a". Such a pair 0t is called an aggregate if its projection 
p(ct) on zc is a connected set (in R2). If there exists a decorated interface 
( J ,  T) such tlaat 0c is the unique aggregate of ( J ,  T), it is said that ~t is a 
standard aggregate. We observe that the following geometrical property 
holds: For  any aggregate 0t, there is a standard aggregate which is just the 
vertical translate of~. A set of standard aggregates with pairwise disjoint 
projections is called an admissible family. 
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Given a decorated interface ( J ,  T), one says that 0t is an aggregate of 
( J ,  T) if p(00 is a connected component of p ( J  u T). The mapping that 
associates with a decorated interface its aggregates in standard position is 
a bijection onto the admissible families of standard aggregates. 

The activity of an aggregate is defined by 

~'3(~) = 1--[ ~k2(w) 1-[ q~( / ' )  (A12) 
w ~ '  F ~ "  

Finally, the partition function (A8) is expressed as a sum over all 
admissible families of standard aggregates 

Q + ( a p ) = ~  1--[ ~k3(~) (A13) 
A o t ~ A  

Taking the two-dimensional projections of the aggregates for polymers, 
the system may now be studied by the standard cluster expansion techni- 
ques. One introduces, as was done before for the contours, the admissible 
and the nonadmissible families with multiplicities of standard aggregates. By 
using expressions analogous to (A1) and (A2), one defines the Boltzmann 
factors ~3(A) and the truncated functions ~k3V(A) on the set of such families. 
Then one gets 

Q• [ - ~  ~k~(A) 1 (AI4) 

where the sum runs over clusters A of standard aggregates inside Ap. 
The main theorem of the theory ensures the absolute convergence 

of the power series (in the variable z=e -2ps) defined by the sum 
Z,o,~ ~ ( A ) ,  provided that f l>flo,  where f l o>0  is some constant. From 
this fact it follows, in particular, that the surface tension r(no) exists at 
low temperatures and is given by r ( n o ) = 2 J - ( 1 / p  ) ~p~, where ~0~(fl)= 
limAp_ ~ (1/flL~L2)In Q• is an analytic function. 

A.5. The t w o - D i m e n s i o n a l  Case 

The theory discussed in this appendix can be adapted, with the natural 
modifications, to any dimension d~> 3. The two-dimensional case differs in 
some particular but important points. First, we notice that contours and 
interfaces can be defined as above (a face is now a unit segment), and that 
all results in Sections A.1 and A.2 follow in the same way. To describe the 
interface, walls and ceilings can be introduced as in Section A.3, but the 
notion of base of a wall does not subsist. In fact, the set B being one- 
dimensional, it has two infinite components instead of one, and there are 
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two ceilings, adjacent  to each wall, which p lay  the role of  bases. The wall 
can be seen as a j u m p  over a height equal  to the difference between the 
ordinates  of  these ceilings. 

Then,  the sum over admissible families of  s t andard  walls in expres- 
sion (A8) has to be restricted to the families W such that  h ( W ) =  
Y~,,,~ w h ( w ) =  O, where h(w)  is the height  of  the wall w. A similar  expression 
can be writ ten for interfaces in any or ientat ion,  namely  

h( I4") = N ~t, ~ W [ ' n  Jr( l ~  p ,f~ 

where N is the integer par t  of  Ll (n2 /n l ) .  The fact that  all interfaces can be 
described in terms of  independent  j umps  leads to a very different s i tuat ion 
from that  found in the three-dimensional  case, where the e lementary  excita- 
t ions can only be described for a rigid hor izonta l  interface. This analysis for 
the two-dimensional  model  was developed by Gal lavot t i  ~6) and further 
s tudied in ref. 23. 

A C K N O W L E D G M E N T S  

The au thor  acknowledges  useful discussions with J. Bricmont ,  
M. Cassandro ,  G. Gal lavot t i ,  R. Kotecky,  and  J. Ruiz. He warmly  thanks  
G. Gal lavot t i  and  G. Benfatto for their  k ind invitat ion,  and the members  
of  the Inst i tute  of  Physics of  the Universi ty  of  Rome "La  Sapienza" for the 
hospi ta l i ty  extended to him dur ing the p repara t ion  of  this work. 

REFERENCES 

1. R. L. Dobrushin, R. Koteck]), and S. B. Shlosman, The Wulff Construction: A Global 
Shape from Local Interactions, (American Mathematical Society, Providence, Rhode 
Island, 1992). 

2. A. Messager, S. Miracle-Sole, and J. Ruiz, Convexity properties of the surface tension and 
equilibrium crystals, J. Stat. Phys. 67:449 (1992). 

3. R. L. Dobrushin and S. B. Shlosman, Thermodynamic inequalities and the geometry of 
the Wulff construction, in ldeas and Methods in Mathematical Analysis, Stochastics and 
Applications, S. Albeverio, S. E. Fenstad, H. Holden, and T. Lindstrom, eds. (Cambridge 
University Press, Cambridge, 1991 ). 

4. R. L. Dobrushin, A Gibbs state describing the coexistence of phases for the three- 
dimensional Ising model, Theory Prob. Appl. 17:582 (1972). 

5. J. Bricmont, J." L. Lebowitz, C. E. Pfister, and E. Olivieri, Non-translation invariant Gibbs 
states with coexisting phases. (I) Existence of a sharp interface for Widom-Rowlinson 
type lattice models in three dimensions, Commun. Math. Phys. 66:1 (1979); J. Bricmont, 
J. L. Lebowitz, and C. E. Pfister, (II) Cluster properties and surface tensions, Commun. 
Math. Phys. 66:21 (1979); (III) Anatyticity properties, Commun. Math. Phys. 69:267 
(1979). 



214 Miracle-Sole 

6. P. Holicky, R. Kotecky, and M. Zahradnik, Rigid interfaces for lattice models at low 
temperatures, .L Stat. Phys. 50:755 (1988). 

7. J. D. Weeks, G. H. Gilmer, and H. J. Leamy, Structural transition in the Ising model 
interface, Phys. Rev. Lett. 31:549 ( 1973 ). 

8. H. van Beijeren, Interface sharpness in the Ising system, Commun. Math. Phys. 40:1 
(1975). 

9. J. Bricmont, J. R. Fontaine, and J. L. Lebowitz, Surface tension, percolation and 
roughening, J. Stat. Phys. 29:193 (1982). 

10. J. Fr6hlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional 
Abelian spin systems and the Coulomb gas, Commun. Math. Phys. 81:527 (1981). 

11. H. van Beijeren and I. Nolden, The roughening transition, in Topics in Current Physics, 
Vol. 43, W. Schommers and P. von Blackenhagen, eds. (Springer, Berlin, 1987). 

12. D. B. Abraham, Surface structures and phase transitions, in Critical Phenomena, Vol. 10, 
C. Domb and J. L. Lebowitz eds. (Academic Press, London, 1986). 

13. C. Rottman and M. Wortis, Statistical mechanics of equilibrium crystal shapes: Interfacial 
phase diagrams and phase transitions, Phys. Rep. 103:59 (1984). 

14. R. Kotecky, Statistical mechanics of interfaces and equilibrium crystal shapes, in 1X Inter- 
national Congress of  Mathematical Physics, B. Simon, A. Truman, and I. M. Davies, eds. 
(Adam Hilger, Bristol, 1989). 

15. J. Bricmont, A. E1 Mellouki, and J. Fr6hlich, Random surfaces in statistical mechanics: 
Roughening, rounding, wetting ..... or. Stat. Phys. 42:743 (1986). 

16. G. Gallavotti, Phase separation line in the two-dimensional Ising model, Commun. Math. 
Phys. 27:103 (1972). 

17. R. Kotecky and S. Miracle-Sole, Roughening transition for the Ising model on a bcc 
lattice. A ease in the theory of ground states, J. Star. Phys. 47:773 (1987). 

18. C. Rottman and M. Wortis, Equilibrium crystal shapes for lattice models with nearest-and 
next-nearest-neighbour interactions, Phys. Rev. B 29:328 (1984). 

19. J. E. Avron, H. van Beijeren, L. S. Shuiman, and R. K. P. Zia, Roughening transition, 
surface tension and equilibrium droplet shapes in a two-dimensional Ising system, J. Phys. 
A: Math. Gen. 15:L81 (1982). 

20. S. Miracle-Sole, In preparation. 
21. A. Messager, S. Miracle-Sole, J. Ruiz, and S. B. Shlosman, Interfaces in the Potts model. 

(II) Antonov's rule and rigidity of the order--disorder interface, Commun. Math. Phys. 
140:275 (1991). 

22. G. Gallavotti, A. Martin-Lof, and S. Miracle-Sole, Some problems connected with the 
description of coexisting phases at low temperatures in Ising models, in Mathematical 
Methods fll Statistical Mechanics, A Lenard, ed. (Springer, Berlin, 1973). 

23. J. Bricmont, J. L. Lebowitz, and C. E. Pfister, On the local structure of the phase separa- 
tion line in the two-dimensional Ising model, J. Stat. Phys. 26:313 (1981). 


